Analytica Posteriora (Posterior Analytics)
Οὐκ ἄρα ἔστιν ἐξ ἄλλου γένους μεταβάντα δεῖξαι, οἷον τὸ γεωμετρικὸν ἀριθμητικῇ. Τρία γάρ ἐστι τὰ ἐν ταῖς ἀποδείξεσιν, ἓν μὲν τὸ ἀποδεικνύμενον τὸ συμπέρασμα· τοῦτο δ᾿ ἐστὶ τὸ ὑπάρχον γένει τινὶ καθ᾿ αὑτό. Ἒν δὲ τὰ ἀξιώματα· ἀξιώματα δ᾿ ἐστὶν ἐξ ὧν. Τρίτον τὸ γένος τὸ ὑποκείμενον, οὗ τὰ πάθη καὶ τὰ καθ᾿ αὑτὰ συμβεβηκότα δηλοῖ ἡ ἀπόδειξις. Ἐξ ὧν μὲν οὖν ἡ ἀπόδειξις, ἐνδέχεται τὰ αὐτὰ εἶναι· ὧν δὲ τὸ γένος ἕτερον, ὥσπερ ἀριθμητικῆς καὶ γεωμετρίας, οὐκ ἔστι τὴν ἀριθμητικὴν ἀπόδειξιν ἐφαρμόσαι ἐπὶ τὰ τοῖς μεγέθεσι συμβεβηκότα, εἰ μὴ τὰ μεγέθη ἀριθμοί εἰσι· τοῦτο δ᾿ ὡς ἐνδέχεται ἐπί τινων, ὕστερον λεχθήσεται. Ἡ δ᾿ ἀριθμητικὴ ἀπόδειξις ἀεὶ ἔχει τὸ γένος περὶ ὃ ἡ ἀπόδειξις, καὶ αἱ ἄλλαι ὁμοίως. Ὤστ᾿ ἢ ἁπλῶς ἀνάγκη τὸ αὐτὸ εἶναι γένος ἢ πῇ, εἰ μέλλει ἡ ἀπόδειξις μεταβαίνειν. Ἄλλως δ᾿ ὅτι ἀδύνατον, δῆλον· ἐκ γὰρ τοῦ αὐτοῦ γένους ἀνάγκη τὰ ἄκρα καὶ τὰ μέσα εἶναι. Εἰ γὰρ μὴ καθ᾿ αὑτά, συμβεβηκότα ἔσται. Διὰ τοῦτο τῇ γεωμετρίᾳ οὐκ ἔστι δεῖξαι ὅτι τῶν ἐναντίων μία ἐπιστήμη, ἀλλ᾿ οὐδ᾿ ὅτι οἱ δύο κύβοι κύβος· οὐδ᾿ ἄλλῃ ἐπιστήμῃ τὸ ἑτέρας, ἀλλ᾿ ἢ ὅσα οὕτως ἔχει πρὸς ἄλληλα ὥστ᾿ εἶναι θάτερον ὑπὸ θάτερον, οἷον τὰ ὀπτικὰ πρὸς γεωμετρίαν καὶ τὰ ἁρμονικὰ πρὸς ἀριθμητικήν. Οὐδ᾿ εἴ τι ὑπάρχει ταῖς γραμμαῖς μὴ ᾗ γραμμαὶ καὶ ᾗ ἐκ τῶν ἀρχῶν τῶν ἰδίων, οἷον εἰ καλλίστη τῶν γραμμῶν ἡ εὐθεῖα ἢ εἰ ἐναντίως ἔχει τῇ περιφερείᾳ· οὐ γὰρ ᾗ τὸ ἴδιον γένος αὐτῶν, ὑπάρχει, ἀλλ᾿ ᾗ κοινόν τι.