Analytica Priora (Prior Analytics)
Ἀπαγωγὴ δ᾿ ἐστὶν ὅταν τῷ μὲν μέσῳ τὸ πρῶτον δῆλον ᾖ ὑπάρχον, τῷ δ᾿ ἐσχάτῳ τὸ μέσον ἄδηλον μέν, ὁμοίως δὲ πιστὸν ἢ μᾶλλον τοῦ συμπεράσματος, ἔτι ἂν ὀλίγα ᾖ τὰ μέσα τοῦ ἐσχάτου καὶ τοῦ μέσου· πάντως γὰρ ἐγγύτερον εἶναι συμβαίνει τῆς ἐπιστήμης. Οἷον ἔστω τὸ Α τὸ διδακτόν, ἐφ᾿ οὗ Β ἐπιστήμη, τὸ Γ δικαιοσύνη. Ἡ μὲν οὖν ἐπιστήμη ὅτι διδακτόν, φανερόν· ἡ δ᾿ ἀρετὴ εἰ ἐπιστήμη, ἄδηλον. Εἰ οὖν ὁμοίως ἢ μᾶλλον πιστὸν τὸ Β Γ τοῦ Α Γ, ἀπαγωγή ἐστιν· ἐγγύτερον γὰρ τοῦ ἐπίστασθαι διὰ τὸ προσειληφέναι τὴν Α Γ ἐπιστήμην πρότερον οὐκ ἔχοντας. Ἤ πάλιν εἰ ὀλίγα τὰ μέσα τῶν Β Γ· καὶ γὰρ οὕτως ἐγγύτερον τοῦ εἰδέναι. Οἷον εἰ τὸ Δ εἴη τετραγωνίζεσθαι, τὸ δ᾿ ἐφ᾿ ᾧ Ε εὐθύγραμμον, τὸ δ᾿ ἐφ᾿ ᾧ Ζ κύκλος· εἰ τοῦ Ε Ζ ἓν μόνον εἴη μέσον, τὸ μετὰ μηνίσκων ἴσον γίνεσθαι εὐθυγράμμῳ τὸν κύκλον, ἐγγὺς ἂν εἴη τοῦ εἰδέναι. Ὅταν δὲ μήτε πιστότερον ᾖ τὸ Β Γ τοῦ Α Γ μήτ᾿ ὀλίγα τὰ μέσα, οὐ λέγω ἀπαγωγήν. Οὐδ᾿ ὅταν ἄμεσον ᾖ τὸ Β Γ· ἐπιστήμη γὰρ τὸ τοιοῦτον.