Analytica Priora (Prior Analytics)
Ἐν ποίῳ δὲ σχήματι ἔστιν ἐξ ἀντικειμένων προτάσεων συλλογίσασθαι καὶ ἐν ποίῳ οὐκ ἔστιν, ὧδ᾿ ἔσται φανερόν. Λέγω δ᾿ ἀντικειμένας εἶναι προτάσεις κατὰ μὲν τὴν λέξιν τέτταρας, οἷον τὸ παντὶ τῷ οὐδενί, καὶ τὸ παντὶ τῷ οὐ παντί, καὶ τὸ τινὶ τῷ οὐδενί, καὶ τὸ τινὶ τῷ οὐ τινί, κατ᾿ ἀλήθειαν δὲ τρεῖς· τὸ γὰρ τινὶ τῷ οὐ τινὶ κατὰ τὴν λέξιν ἀντίκειται μόνον. Τούτων δ᾿ ἐναντίας μὲν τὰς καθόλου, τὸ παντὶ τῷ μηδενὶ ὑπάρχειν, οἷον τὸ πᾶσαν ἐπιστήμην εἶναι σπουδαίαν τῷ μηδεμίαν εἶναι σπουδαίαν, τὰς δ᾿ ἄλλας ἀντικειμένας.
Ἐν μὲν οὖν τῷ πρώτῳ σχήματι οὐκ ἔστιν ἐξ ἀντικειμένων προτάσεων συλλογισμός, οὔτε καταφατικὸς οὔτε ἀποφατικός, καταφατικὸς μὲν ὅτι ἀμφοτέρας δεῖ καταφατικὰς εἶναι τὰς προτάσεις, αἱ δ᾿ ἀντικείμεναι φάσις καὶ ἀπόφασις, στερητικὸς δὲ ὅτι αἱ μὲν ἀντικείμεναι τὸ αὐτὸ τοῦ αὐτοῦ κατηγοροῦσι καὶ ἀπαρνοῦνται, τὸ δ᾿ ἐν τῷ πρώτῳ μέσον οὐ λέγεται κατ᾿ ἀμφοῖν, ἀλλ᾿ ἐκείνου μὲν ἄλλο ἀπαρνεῖται, αὐτὸ δὲ ἄλλου κατηγορεῖται· αὗται δ᾿ οὐκ ἀντίκεινται.
Ἐν δὲ τῷ μέσῳ σχήματι καὶ ἐκ τῶν ἀντικειμένων καὶ ἐκ τῶν ἐναντίων ἐνδέχεται γίνεσθαι συλλογισμόν. Ἔστω γὰρ ἀγαθὸν μὲν ἐφ᾿ οὗ Α, ἐπιστήμη δὲ ἐφ᾿ οὗ Β καὶ Γ. Εἰ δὴ πᾶσαν ἐπιστήμην σπουδαίαν ἔλαβε καὶ μηδεμίαν, τὸ Α τῷ Β παντὶ ὑπάρχει καὶ τῷ Γ οὐδενί, ὥστε τὸ Β τῷ Γ οὐδενί· οὐδεμία ἄρα ἐπιστήμη ἐπιστήμη ἐστίν. Ὁμοίως δὲ καὶ εἰ πᾶσαν λαβὼν σπουδαίαν τὴν ἰατρικὴν μὴ σπουδαίαν ἔλαβε· τῷ μὲν γὰρ Β παντὶ τὸ Α, τῷ δὲ Γ οὐδενί, ὥστε ἡ τὶς ἐπιστήμη οὐκ ἔσται ἐπιστήμη. Καὶ εἰ τῷ μὲν Γ παντὶ τὸ Α, τῷ δὲ Β μηδενί, ἔστι δὲ τὸ μὲν Β ἐπιστήμη, τὸ δὲ Γ ἰατρική, τὸ δὲ Α ὑπόληψις· οὐδεμίαν γὰρ ἐπιστήμην ὑπόληψιν λαβὼν εἴληφε τινὰ ἐπιστήμην εἶναι ὑπόληψιν. Διαφέρει δὲ τοῦ πάλαι τῷ ἐπὶ τῶν ὅρων ἀντιστρέφεσθαι· πρότερον μὲν γὰρ πρὸς τῷ Β, νῦν δὲ πρὸς τῷ Γ τὸ καταφατικόν. Καὶ ἂν ᾖ δὲ μὴ καθόλου ἡ ἑτέρα πρότασις, ὡσαύτως· ἀεὶ γὰρ τὸ μέσον ἐστὶν ὃ ἀπὸ θατέρου μὲν ἀποφατικῶς λέγεται, κατὰ θατέρου δὲ καταφατικῶς. Ὥστ᾿ ἐνδέχεται τἀντικείμενα περαίνεσθαι, πλὴν οὐκ ἀεὶ οὐδὲ πάντως, ἀλλ᾿ ἐὰν οὕτως ἔχῃ τὰ ὑπὸ τὸ μέσον ὥστ᾿ ἢ ταὐτὰ εἶναι ἢ ὅλον πρὸς μέρος. Ἄλλως δ᾿ ἀδύνατον· οὐ γὰρ ἔσονται οὐδαμῶς αἱ προτάσεις οὔτ᾿ ἐναντίαι οὔτ᾿ ἀντικείμεναι.
Ἐν δὲ τῷ τρίτῳ σχήματι καταφατικὸς μὲν συλλογισμὸς οὐδέποτ᾿ ἔσται ἐξ ἀντικειμένων προτάσεων διὰ τὴν εἰρημένην αἰτίαν καὶ ἐπὶ τοῦ πρώτου σχήματος, ἀποφατικὸς δ᾿ ἔσται, καὶ καθόλου καὶ μὴ καθόλου τῶν ὅρων ὄντων. Ἔστω γὰρ ἐπιστήμη ἐφ᾿ οὗ τὸ Β καὶ Γ, ἰατρικὴ δ᾿ ἐφ᾿ οὗ Α. Εἰ οὖν λάβοι πᾶσαν ἰατρικὴν ἐπιστήμην καὶ μηδεμίαν ἰατρικὴν ἐπιστήμην, τὸ Β παντὶ τῷ Α εἴληφε καὶ τὸ Γ οὐδενί, ὥστ᾿ ἔσται τις ἐπιστήμη οὐκ ἐπιστήμη. Ὁμοίως δὲ καὶ ἂν μὴ καθόλου ληφθῇ ἡ Α Β πρότασις· εἰ γάρ ἐστί τις ἰατρικὴ ἐπιστήμη καὶ πάλιν μηδεμία ἰατρικὴ ἐπιστήμη, συμβαίνει ἐπιστήμην τινὰ μὴ εἶναι ἐπιστήμην. Εἰσὶ δὲ καθόλου μὲν τῶν ὅρων λαμβανομένων ἐναντίαι αἱ προτάσεις, ἐὰν δ᾿ ἐν μέρει ἅτερος, ἀντικείμεναι.
Δεῖ δὲ κατανοεῖν ὅτι ἐνδέχεται μὲν οὕτω τὰ ἀντικείμενα λαμβάνειν, ὥσπερ εἴπομεν πᾶσαν ἐπιστήμην σπουδαίαν εἶναι καὶ πάλιν μηδεμίαν, ἢ τινὰ μὴ σπουδαίαν· ὅπερ οὐκ εἴωθε λανθάνειν. Ἔστι δὲ δι᾿ ἄλλων ἐρωτημάτων συλλογίσασθαι θάτερον, ἢ ὡς ἐν Τοπικοῖς ἐλέχθη λαβεῖν. Ἐπεὶ δὲ τῶν καταφάσεων αἱ ἀντιθέσεις τρεῖς, ἑξαχῶς συμβαίνει τἀντικείμενα λαμβάνειν, ἢ παντὶ καὶ μηδενὶ, ἢ παντὶ καὶ μὴ παντί, ἢ τινὶ καὶ μηδενί, καὶ τοῦτο ἀντιστρέψαι ἐπὶ τῶν ὅρων, οἷον τὸ Α παντὶ τῷ Β, τῷ δὲ Γ μηδενί, ἢ τῷ Γ παντί, τῷ δὲ Β μηδενί, ἢ τῷ μὲν παντί, τῷ δὲ μὴ παντί, καὶ πάλιν τοῦτο ἀντιστρέψαι κατὰ τοὺς ὅρους. Ὁμοίως δὲ καὶ ἐπὶ τοῦ τρίτου σχήματος. Ὥστε φανερὸν ὁσαχῶς τε καὶ ἐν ποίοις σχήμασιν ἐνδέχεται διὰ τῶν ἀντικειμένων προτάσεων γενέσθαι συλλογισμόν.
Φανερὸν δὲ καὶ ὅτι ἐκ ψευδῶν μὲν ἔστιν ἀληθὲς συλλογίσασθαι, καθάπερ εἴρηται πρότερον, ἐκ δὲ τῶν ἀντικειμένων οὐκ ἔστιν· ἀεὶ γὰρ ἐναντίος ὁ συλλογισμὸς γίνεται τῷ πράγματι, οἷον εἰ ἔστιν ἀγαθόν, μὴ εἶναι ἀγαθόν, ἢ εἰ ζῷον, μὴ ζῷον, διὰ τὸ ἐξ ἀντιφάσεως εἶναι τὸν συλλογισμὸν καὶ τοὺς ὑποκειμένους ὅρους ἢ τοὺς αὐτοὺς εἶναι ἢ τὸν μὲν ὅλον τὸν δὲ μέρος. Δῆλον δὲ καὶ ὅτι ἐν τοῖς παραλογισμοῖς οὐδὲν κωλύει γίνεσθαι τῆς ὑποθέσεως ἀντίφασιν, οἷον εἰ ἔστι περιττόν, μὴ εἶναι περιττόν. Ἐκ γὰρ τῶν ἀντικειμένων προτάσεων ἐναντίος ἦν ὁ συλλογισμός· ἐὰν οὖν λάβῃ τοιαύτας, ἔσται τῆς ὑποθέσεως ἀντίφασις. Δεῖ δὲ κατανοεῖν ὅτι οὕτω μὲν οὐκ ἔστιν ἐναντία συμπεράνασθαι ἐξ ἑνὸς συλλογισμοῦ, ὥστ᾿ εἶναι τὸ συμπέρασμα τὸ μὴ ὂν ἀγαθὸν ἀγαθὸν ἢ ἄλλο τι τοιοῦτον, ἐὰν μὴ εὐθὺς ἡ πρότασις τοιαύτη ληφθῇ, οἷον πᾶν ζῷον λευκὸν εἶναι καὶ μὴ λευκόν, τὸν δ᾿ ἄνθρωπον ζῷον. Ἀλλ᾿ ἢ προσλαβεῖν δεῖ τὴν ἀντίφασιν, οἷον ὅτι πᾶσα ἐπιστήμη ὑπόληψις καὶ οὐχ ὑπόληψις, εἶτα λαβεῖν ὅτι ἡ ἰατρικὴ ἐπιστήμη μέν ἐστιν, οὐδεμία δ᾿ ὑπόληψις, ὥσπερ οἱ ἔλεγχοι γίνονται, ἢ ἐκ δύο συλλογισμῶν. Ὥστε δ᾿ εἶναι ἐναντία κατ᾿ ἀλήθειαν τὰ εἰλημμένα, οὐκ ἔστιν ἄλλον τρόπον ἢ τοῦτον, καθάπερ εἴρηται πρότερον.